Symmetries of Love: Ladder Structure of Static and Rotating Black Holes (2024)

Chanchal Sharma21510042@iitgn.ac.in Indian Institute of Technology, Gandhinagar, Gujarat 382055, India  RajesGhoshrajes.ghosh@iitgn.ac.inIndian Institute of Technology, Gandhinagar, Gujarat 382055, India  SudiptaSarkarsudiptas@iitgn.ac.inIndian Institute of Technology, Gandhinagar, Gujarat 382055, India

Abstract

Black hole solutions of general relativity exhibit a symmetry for the static perturbations around these spacetimes, known as “ladder symmetry”. This symmetry proves useful in constructing a tower of solutions for perturbations and elucidating their general properties. Specifically, the presence of this symmetry leads to vanishing of the tidal love number associated with black holes. In this work, we find the most general spherical symmetric and static black hole spacetime that accommodates this ladder symmetry for scalar perturbation. Furthermore, we extend our calculations beyond spherical symmetry to find the class of stationary Konoplya-Rezzola-Zhidenko black holes, which also possess a similar ladder structure.

I Introduction

The concept of symmetry is arguably the most profound principle in physics. Symmetry principles often bear important theoretical consequences, which is greatly exemplified in the construction of both standard model of particle physics and theory of relativity. The notion of symmetry may also play further important role to find physics beyond these established theories.

In the present era of gravitational wave astronomy, when we are equipped with unprecedented technology to explore the features of extreme gravity, the implications of various symmetry principles might lead to far-reaching observational and theoretical consequences. A prime illustration of this is to understand the response of black holes (BHs) in an external tidal environment. The presence of a horizon imparts distinct characteristics to BHs in comparison to other astrophysical objects without horizons. Unlike such a horizonless compact object, both Reissner-Nordström and Kerr BH solutions in general relativity (GR) are known to have zero Love number Binnington:2009bb ; Damour:2009vw ; Kol:2011vg ; Pani:2015hfa ; Landry:2015zfa ; LeTiec:2020spy ; Chia:2020yla , quantifying the vanishing tidal deformation under an external perturbation. This intriguing result can be interpreted as a manifestation of the celebrated no-hair theorems for BHs in GRBekenstein:1971hc ; Bekenstein:1972ky ; Gurlebeck:2015xpa , establishing a natural connection between the presence of BH hairs and their tidal response.

In the conventional method for computing the tidal Love number (TLN), we study the linear perturbations around an asymptotically flat BH spacetime. The radial component of such a perturbation obeys a second-order differential equation, yielding two linearly independent solutions. At large distances away from the central BH, these solutions manifest as the tidal field growing as rsuperscript𝑟r^{\ell}italic_r start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT, and the static response decaying as r1superscript𝑟1r^{-\ell-1}italic_r start_POSTSUPERSCRIPT - roman_ℓ - 1 end_POSTSUPERSCRIPT. Here, the integer 00\ell\geq 0roman_ℓ ≥ 0 represents the multipole order of the perturbing field. Then, motivated by an analogous Newtonian calculationBinnington:2009bb ; Damour:2009vw ; Poisson:2014 ; Cardoso:2017cfl , the TLN is defined as the ratio of the coefficient of the decaying tail to that of the tidal field. Utilizing this definition and considering the divergence of the static response at the horizon, it becomes evident that a Reissner-Nordström/Kerr BH have zero Love number.

Apart from the aforesaid standard calculation, it has been recently demonstrated that the vanishing of TLN of BHs in GR can be attributed to a fundamental symmetry, known as the ladder symmetry Hui:2021vcv ; Berens:2022ebl ; BenAchour:2022uqo ; Katagiri:2022vyz ; Hui:2022vbh . As a consequence of this symmetry, the Hamiltonian corresponding to the scalar/vector/gravitational perturbations in both Reissner-Nordström and Kerr background enjoys a decomposition in terms of the so-called raising and lowering operators analogous to that of a quantum harmonic oscillator. Then, vanishing of TLN follows directly by repeated application of the raising operator on the “ground state” solution, which has zero Love number.

Inspired by these interesting ideas, our aim is to conduct a comprehensive study of the ladder symmetries associated with general static and stationary BH spacetimes. In particular, we try to answer the following question: How the existence of such a ladder structure constraints the background BH spacetime? For this purpose, we start with an arbitrary spherically symmetric static metric and find the form of the metric components from the imposition of generic ladder symmetry. To keep our analysis theory-agnostic, we focus solely on the scalar perturbations. This allows us to construct the most general static and spherically symmetric BH spacetime possessing a ladder structure for such scalar perturbations. It turns out such a metric must have a form given by,

ds2=Δb(r)h(r)dt2+h(r)Δb(r)dr2+h(r)dΩ(2)2,dsuperscript𝑠2subscriptΔ𝑏𝑟𝑟dsuperscript𝑡2𝑟subscriptΔ𝑏𝑟dsuperscript𝑟2𝑟dsuperscriptsubscriptΩ22\mathrm{d}s^{2}=-\frac{\Delta_{b}(r)}{h(r)}\,\mathrm{d}t^{2}+\frac{h(r)}{%\Delta_{b}(r)}\,\mathrm{d}r^{2}+h(r)\,\mathrm{d}\Omega_{(2)}^{2}\,,roman_d italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = - divide start_ARG roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_r ) end_ARG start_ARG italic_h ( italic_r ) end_ARG roman_d italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG italic_h ( italic_r ) end_ARG start_ARG roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_r ) end_ARG roman_d italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_h ( italic_r ) roman_d roman_Ω start_POSTSUBSCRIPT ( 2 ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,(1)

where Δb(r)=r2c2r+c3subscriptΔ𝑏𝑟superscript𝑟2subscript𝑐2𝑟subscript𝑐3\Delta_{b}(r)=r^{2}-c_{2}\,r+c_{3}roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_r ) = italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_r + italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT with (c2,c3)subscript𝑐2subscript𝑐3(c_{2},c_{3})( italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) being some constants and h(r)𝑟h(r)italic_h ( italic_r ) is an arbitrary radial function. We also extend our analysis to find the most general metric within the so-called Konoplya-Rezzola-Zhidenko class that has a similar ladder structure.

It is intriguing that the imposition of the ladder symmetry leads to such severe constraints on the form of the BH metric. Moreover, because of ladder symmetry, these BHs will have vanishing TLN for scalar perturbations. Considering that astrophysical BHs are rarely isolated and are under constant external influence, our explorations may enhance the understanding of how BHs behave in the presence of perturbations—an aspect of central observational importance Fang:2005qq ; Creci:2021rkz ; Cai:2019npx ; Tan:2020hog ; Charalambous:2023jgq ; Katagiri:2023umb ; DeLuca:2022xlz ; Katagiri:2023yzm ; Zi:2023pvl ; Nair:2022xfm ; Chakraborty:2023zed .

II Review of Ladder Symmetries in Reissner-Nordström and Kerr Case

Before we move on to a more general calculation, it is useful to recall the computation of ladder symmetry in the Reissner-Nordström and Kerr BH spacetimes. For our purpose, we shall only focus on the tidal response of these BHs in a scalar environment.

In the presence of a massless, static scalar field, the relevant perturbation equation takes the well-known Klein-Gordon form: Φ(r,θ,ϕ)=0Φ𝑟𝜃italic-ϕ0\Box\,\Phi(r,\theta,\phi)=0□ roman_Φ ( italic_r , italic_θ , italic_ϕ ) = 0. Here, the d’Alembertian operator is defined with respect to the background metric, which for a Reissner-Nordström BH with mass M𝑀Mitalic_M and electric charge Q𝑄Qitalic_Q (M|Q|𝑀𝑄M\geq|Q|italic_M ≥ | italic_Q |) is given by

ds2=fRN(r)dt2+dr2fRN(r)+r2dΩ(2)2,dsuperscript𝑠2subscript𝑓𝑅𝑁𝑟dsuperscript𝑡2dsuperscript𝑟2subscript𝑓𝑅𝑁𝑟superscript𝑟2dsuperscriptsubscriptΩ22\mathrm{d}s^{2}=-f_{RN}(r)\,\mathrm{d}t^{2}+\frac{\mathrm{d}r^{2}}{f_{RN}(r)}+%r^{2}\,\mathrm{d}\Omega_{(2)}^{2}\,,roman_d italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = - italic_f start_POSTSUBSCRIPT italic_R italic_N end_POSTSUBSCRIPT ( italic_r ) roman_d italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG roman_d italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_f start_POSTSUBSCRIPT italic_R italic_N end_POSTSUBSCRIPT ( italic_r ) end_ARG + italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_d roman_Ω start_POSTSUBSCRIPT ( 2 ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,(2)

where fRN(r)=1rs/r+rQ2/r2subscript𝑓𝑅𝑁𝑟1subscript𝑟𝑠𝑟superscriptsubscript𝑟𝑄2superscript𝑟2f_{RN}(r)=1-r_{s}/r+r_{Q}^{2}/r^{2}italic_f start_POSTSUBSCRIPT italic_R italic_N end_POSTSUBSCRIPT ( italic_r ) = 1 - italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT / italic_r + italic_r start_POSTSUBSCRIPT italic_Q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT with rs=2Msubscript𝑟𝑠2𝑀r_{s}=2Mitalic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = 2 italic_M and rQ=Qsubscript𝑟𝑄𝑄r_{Q}=Qitalic_r start_POSTSUBSCRIPT italic_Q end_POSTSUBSCRIPT = italic_Q. Hence, the horizons are located at r±=rs/2±[(rs/2)2rQ2]1/2subscript𝑟plus-or-minusplus-or-minussubscript𝑟𝑠2superscriptdelimited-[]superscriptsubscript𝑟𝑠22superscriptsubscript𝑟𝑄212r_{\pm}=r_{s}/2\pm[(r_{s}/2)^{2}-r_{Q}^{2}]^{1/2}italic_r start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT = italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT / 2 ± [ ( italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT / 2 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_r start_POSTSUBSCRIPT italic_Q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT. Then, using a mode decomposition of the static scalar field in terms of spherical harmonics Φm(r,θ,ϕ)=ϕ(r)Ym(θ,ϕ)subscriptΦ𝑚𝑟𝜃italic-ϕsubscriptitalic-ϕ𝑟subscript𝑌𝑚𝜃italic-ϕ\Phi_{\ell m}(r,\theta,\phi)=\phi_{\ell}(r)Y_{\ell m}(\theta,\phi)roman_Φ start_POSTSUBSCRIPT roman_ℓ italic_m end_POSTSUBSCRIPT ( italic_r , italic_θ , italic_ϕ ) = italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT ( italic_r ) italic_Y start_POSTSUBSCRIPT roman_ℓ italic_m end_POSTSUBSCRIPT ( italic_θ , italic_ϕ ), the Klein-Gordon equation can be reduced to a second-order radial differential equation: r(Δrϕ)(+1)ϕ=0subscript𝑟Δsubscript𝑟subscriptitalic-ϕ1subscriptitalic-ϕ0\partial_{r}(\Delta\,\partial_{r}\phi_{\ell})-\ell(\ell+1)\phi_{\ell}=0∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( roman_Δ ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT ) - roman_ℓ ( roman_ℓ + 1 ) italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT = 0,where Δ(r)=r2fRN(r)Δ𝑟superscript𝑟2subscript𝑓𝑅𝑁𝑟\Delta(r)=r^{2}\,f_{RN}(r)roman_Δ ( italic_r ) = italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_f start_POSTSUBSCRIPT italic_R italic_N end_POSTSUBSCRIPT ( italic_r ). This can be rewritten in a very suggestive form as Hϕ=0subscript𝐻subscriptitalic-ϕ0H_{\ell}\,\phi_{\ell}\,=0italic_H start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT = 0, with the following definition of the Hamiltonian,

H=Δ(r)[r{Δ(r)r}(+1)].subscript𝐻Δ𝑟delimited-[]subscript𝑟Δ𝑟subscript𝑟1H_{\ell}=-\Delta(r)\left[\partial_{r}\big{\{}\Delta(r)\partial_{r}\big{\}}-%\ell\big{(}\ell+1\big{)}\right]\,.italic_H start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT = - roman_Δ ( italic_r ) [ ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT { roman_Δ ( italic_r ) ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT } - roman_ℓ ( roman_ℓ + 1 ) ] .(3)

In analogy to quantum harmonic oscillator, the above Hamiltonian then supports factorization in terms of two first-order operatorsHui:2021vcv ; Berens:2022ebl ,

D+=Δ(r)r+12Δ(r);D=Δ(r)r2Δ(r),formulae-sequencesuperscriptsubscript𝐷Δ𝑟subscript𝑟12superscriptΔ𝑟superscriptsubscript𝐷Δ𝑟subscript𝑟2superscriptΔ𝑟D_{\ell}^{+}=-\Delta(r)\,\partial_{r}-\frac{\ell+1}{2}\Delta^{\prime}(r)\,;\,D%_{\ell}^{-}=\Delta(r)\,\partial_{r}-\frac{\ell}{2}\Delta^{\prime}(r)\,,italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT = - roman_Δ ( italic_r ) ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT - divide start_ARG roman_ℓ + 1 end_ARG start_ARG 2 end_ARG roman_Δ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ) ; italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT = roman_Δ ( italic_r ) ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT - divide start_ARG roman_ℓ end_ARG start_ARG 2 end_ARG roman_Δ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ) ,(4)

which are coined as the raising and lowering operators, respectively. As their names suggest, D±superscriptsubscript𝐷plus-or-minusD_{\ell}^{\pm}italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT connects the radial solution ϕsubscriptitalic-ϕ\phi_{\ell}italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT to ϕ±1subscriptitalic-ϕplus-or-minus1\phi_{\ell\pm 1}italic_ϕ start_POSTSUBSCRIPT roman_ℓ ± 1 end_POSTSUBSCRIPT. In mathematical terms, this translates into two commutation relations with the Hamiltonian,

H+1D+=D+H;H1D=DH.formulae-sequencesubscript𝐻1superscriptsubscript𝐷superscriptsubscript𝐷subscript𝐻subscript𝐻1superscriptsubscript𝐷superscriptsubscript𝐷subscript𝐻H_{\ell+1}\,D_{\ell}^{+}=D_{\ell}^{+}\,H_{\ell}\,;\,H_{\ell-1}D_{\ell}^{-}=D_{%\ell}^{-}H_{\ell}\,.italic_H start_POSTSUBSCRIPT roman_ℓ + 1 end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT = italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT ; italic_H start_POSTSUBSCRIPT roman_ℓ - 1 end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT = italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT .(5)

Also, the Hamiltonian is related to the two ladder operators as

H=D1+D24(rs24rQ2)=D+1D+(+1)24(rs24rQ2).subscript𝐻superscriptsubscript𝐷1superscriptsubscript𝐷superscript24superscriptsubscript𝑟𝑠24superscriptsubscript𝑟𝑄2superscriptsubscript𝐷1superscriptsubscript𝐷superscript124superscriptsubscript𝑟𝑠24superscriptsubscript𝑟𝑄2\begin{split}H_{\ell}&=D_{\ell-1}^{+}D_{\ell}^{-}-\frac{\ell^{2}}{4}(r_{s}^{2}%-4r_{Q}^{2})\\&=D_{\ell+1}^{-}D_{\ell}^{+}-\frac{(\ell+1)^{2}}{4}(r_{s}^{2}-4r_{Q}^{2})\,.%\end{split}start_ROW start_CELL italic_H start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT end_CELL start_CELL = italic_D start_POSTSUBSCRIPT roman_ℓ - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT - divide start_ARG roman_ℓ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG ( italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 4 italic_r start_POSTSUBSCRIPT italic_Q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = italic_D start_POSTSUBSCRIPT roman_ℓ + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT - divide start_ARG ( roman_ℓ + 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG ( italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 4 italic_r start_POSTSUBSCRIPT italic_Q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) . end_CELL end_ROW(6)

The above set of relations in Eq.(5) and Eq.(6) define a ladder structure, which plays a key role in showing the vanishing of Love numbers for Reissner-Nordström BHs. For this purpose, let us first observe that for =00\ell=0roman_ℓ = 0, ϕ0=constantsubscriptitalic-ϕ0constant\phi_{0}=\text{constant}italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = constant represents an allowed solution to the radial equation Hϕ=0subscript𝐻subscriptitalic-ϕ0H_{\ell}\phi_{\ell}=0italic_H start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT = 0. Then, any other solution with higher >00\ell>0roman_ℓ > 0 values can be constructed from ϕ0subscriptitalic-ϕ0\phi_{0}italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT by a repeated application of the raising operator as ϕD1+D2+D1+D0+ϕ0proportional-tosubscriptitalic-ϕsuperscriptsubscript𝐷1superscriptsubscript𝐷2superscriptsubscript𝐷1superscriptsubscript𝐷0subscriptitalic-ϕ0\phi_{\ell}\propto D_{\ell-1}^{+}D_{\ell-2}^{+}...D_{1}^{+}D_{0}^{+}\phi_{0}italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT ∝ italic_D start_POSTSUBSCRIPT roman_ℓ - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT roman_ℓ - 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT … italic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT.Note that such a solution yields a growing rsuperscript𝑟r^{\ell}italic_r start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT branch at infinity, which represents the tidal field in Newtonian terminology. Moreover, the ladder symmetry leads to a Noether current defined as P(r)=Δr(D1D2Dϕ)subscript𝑃𝑟Δsubscript𝑟superscriptsubscript𝐷1superscriptsubscript𝐷2superscriptsubscript𝐷subscriptitalic-ϕP_{\ell}(r)=\Delta\,\partial_{r}\left(D_{1}^{-}D_{2}^{-}\cdots D_{\ell}^{-}%\phi_{\ell}\right)italic_P start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT ( italic_r ) = roman_Δ ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ⋯ italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT ), which is conserved rP(r)=0subscript𝑟subscript𝑃𝑟0\partial_{r}P_{\ell}(r)=0∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT ( italic_r ) = 0 on-shell. The utility of this conserved quantity lies in understanding how the asymptotic solutions with particular behaviors get connected to the near horizon ones without explicitly solving the differential equation.

For example, it is easy to see that ϕD1+D2+D1+D0+ϕ0proportional-tosubscriptitalic-ϕsuperscriptsubscript𝐷1superscriptsubscript𝐷2superscriptsubscript𝐷1superscriptsubscript𝐷0subscriptitalic-ϕ0\phi_{\ell}\propto D_{\ell-1}^{+}D_{\ell-2}^{+}...D_{1}^{+}D_{0}^{+}\phi_{0}italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT ∝ italic_D start_POSTSUBSCRIPT roman_ℓ - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT roman_ℓ - 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT … italic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT for ϕ0=constantsubscriptitalic-ϕ0constant\phi_{0}=\text{constant}italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = constant yields P=0subscript𝑃0P_{\ell}=0italic_P start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT = 0 and hence, the corresponding ϕsubscriptitalic-ϕ\phi_{\ell}italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT must be regular on the horizon. Apart from this regular solution, there is an independent decaying response proportional to r1superscript𝑟1r^{-\ell-1}italic_r start_POSTSUPERSCRIPT - roman_ℓ - 1 end_POSTSUPERSCRIPT at infinity, which leads to a non-zero Psubscript𝑃P_{\ell}italic_P start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT at infinity. Then, the conservation of Psubscript𝑃P_{\ell}italic_P start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT implies that this decaying solution at infinity must diverge as ln(r/rs1)𝑟subscript𝑟𝑠1\ln\left(r/r_{s}-1\right)roman_ln ( italic_r / italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT - 1 ) near the horizon, which must be discarded. Hence, the Love number, specified by the ratio of the decaying tail to the growing one, should vanish identically.

A similar line of reasoning follows in the case of a rotating Kerr BH as well. For mass M𝑀Mitalic_M and spin angular momentum a𝑎aitalic_a (M|a|𝑀𝑎M\geq|a|italic_M ≥ | italic_a |), the Kerr metric is given by

ds2=Δρ2(dtasin2θdφ)2+ρ2Δdr2+ρ2dθ2+sin2θρ2(adt(r2+a2)dφ)2dsuperscript𝑠2Δsuperscript𝜌2superscriptd𝑡𝑎superscript2𝜃d𝜑2superscript𝜌2Δdsuperscript𝑟2superscript𝜌2dsuperscript𝜃2superscript2𝜃superscript𝜌2superscript𝑎d𝑡superscript𝑟2superscript𝑎2d𝜑2\begin{split}\mathrm{d}s^{2}=-\frac{\Delta}{\rho^{2}}&\left(\mathrm{~{}d}t-a\,%\sin^{2}\theta\,\mathrm{d}\varphi\right)^{2}+\frac{\rho^{2}}{\Delta}\mathrm{d}%r^{2}+\rho^{2}\mathrm{~{}d}\theta^{2}\\&+\frac{\sin^{2}\theta}{\rho^{2}}\left(a\mathrm{~{}d}t-\left(r^{2}+a^{2}\right%)\mathrm{d}\varphi\right)^{2}\end{split}start_ROW start_CELL roman_d italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = - divide start_ARG roman_Δ end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_CELL start_CELL ( roman_d italic_t - italic_a roman_sin start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_θ roman_d italic_φ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG roman_Δ end_ARG roman_d italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_d italic_θ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL + divide start_ARG roman_sin start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_θ end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_a roman_d italic_t - ( italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) roman_d italic_φ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW(7)

where ρ=r2+a2cos2θ𝜌superscript𝑟2superscript𝑎2superscript2𝜃\rho=r^{2}+a^{2}\cos^{2}\thetaitalic_ρ = italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_cos start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_θ and Δ=r2rrs+a2Δsuperscript𝑟2𝑟subscript𝑟𝑠superscript𝑎2\Delta=r^{2}-rr_{s}+a^{2}roman_Δ = italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_r italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Thus, the inner/outer horizons are located at r±=rs/2±(rs/2)2a2subscript𝑟plus-or-minusplus-or-minussubscript𝑟𝑠2superscriptsubscript𝑟𝑠22superscript𝑎2r_{\pm}=r_{s}/2\pm\sqrt{(r_{s}/2)^{2}-a^{2}}italic_r start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT = italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT / 2 ± square-root start_ARG ( italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT / 2 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG. In such a spacetime, the scalar perturbation equation boils down to

r(Δrϕ)+a2m2Δϕ(+1)ϕ=0.subscript𝑟Δsubscript𝑟subscriptitalic-ϕsuperscript𝑎2superscript𝑚2Δsubscriptitalic-ϕ1subscriptitalic-ϕ0\partial_{r}(\Delta\,\partial_{r}\phi_{\ell})+\frac{a^{2}m^{2}}{\Delta}\phi_{%\ell}-\ell(\ell+1)\phi_{\ell}=0.∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( roman_Δ ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT ) + divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG roman_Δ end_ARG italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT - roman_ℓ ( roman_ℓ + 1 ) italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT = 0 .(8)

Then, following Ref.Hui:2021vcv , we can rewrite the above equation in a form analogous to the Reissner-Nordström case:

Hϕ=0,H=Δ[r{Δ(r)r}+a2m2Δ(+1)].formulae-sequencesubscript𝐻subscriptitalic-ϕ0subscript𝐻Δdelimited-[]subscript𝑟Δ𝑟subscript𝑟superscript𝑎2superscript𝑚2Δ1H_{\ell}\,\phi_{\ell}\,=0,\,\,H_{\ell}=-\Delta\Big{[}\partial_{r}\left\{\Delta%(r)\partial_{r}\right\}+\frac{a^{2}m^{2}}{\Delta}-\ell(\ell+1)\Big{]}.italic_H start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT = 0 , italic_H start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT = - roman_Δ [ ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT { roman_Δ ( italic_r ) ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT } + divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG roman_Δ end_ARG - roman_ℓ ( roman_ℓ + 1 ) ] .(9)

A ladder structure resembling the one described forthe static spherically symmetric BH is present inKerr case too, which becomes apparent by defining theladder operators as

D+=Δr++12(rs2r),superscriptsubscript𝐷Δsubscript𝑟12subscript𝑟𝑠2𝑟\displaystyle D_{\ell}^{+}=-\Delta\,\partial_{r}+\frac{\ell+1}{2}(r_{s}-2r)\,,italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT = - roman_Δ ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT + divide start_ARG roman_ℓ + 1 end_ARG start_ARG 2 end_ARG ( italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT - 2 italic_r ) ,(10)
D=Δr+2(rs2r).superscriptsubscript𝐷Δsubscript𝑟2subscript𝑟𝑠2𝑟\displaystyle D_{\ell}^{-}=\Delta\,\partial_{r}+\frac{\ell}{2}(r_{s}-2r).italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT = roman_Δ ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT + divide start_ARG roman_ℓ end_ARG start_ARG 2 end_ARG ( italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT - 2 italic_r ) .

These operators follow relations similar to Eq.(5). The behavior of Eq.(9) at the two asymptotes can be examined here as well. At large r𝑟ritalic_r, the two independent solutions for ϕsubscriptitalic-ϕ\phi_{\ell}italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT are rsuperscript𝑟r^{\ell}italic_r start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT and r1superscript𝑟1r^{-\ell-1}italic_r start_POSTSUPERSCRIPT - roman_ℓ - 1 end_POSTSUPERSCRIPT. Whereas in the near-horizon limit zzk𝑧subscript𝑧𝑘z\rightarrow z_{k}italic_z → italic_z start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, ϕsubscriptitalic-ϕ\phi_{\ell}italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT goes as either constant or as e2iqln(z/zk1)superscript𝑒2𝑖𝑞𝑧subscript𝑧𝑘1e^{-2iq\ln(z/z_{k}-1)}italic_e start_POSTSUPERSCRIPT - 2 italic_i italic_q roman_ln ( italic_z / italic_z start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT - 1 ) end_POSTSUPERSCRIPT, where q=am/zk𝑞𝑎𝑚subscript𝑧𝑘q=a\,m/z_{k}italic_q = italic_a italic_m / italic_z start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT with z=rr𝑧𝑟subscript𝑟z=r-r_{-}italic_z = italic_r - italic_r start_POSTSUBSCRIPT - end_POSTSUBSCRIPT and zk=r+rsubscript𝑧𝑘subscript𝑟subscript𝑟z_{k}=r_{+}-r_{-}italic_z start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_r start_POSTSUBSCRIPT + end_POSTSUBSCRIPT - italic_r start_POSTSUBSCRIPT - end_POSTSUBSCRIPT. Among them, the former is regular at the horizon and can be raised to the solution with multipole \ellroman_ℓ using ϕ=D1+D2+D1+D0+ϕ0subscriptitalic-ϕsuperscriptsubscript𝐷1superscriptsubscript𝐷2superscriptsubscript𝐷1superscriptsubscript𝐷0subscriptitalic-ϕ0\phi_{\ell}=D_{\ell-1}^{+}D_{\ell-2}^{+}...D_{1}^{+}D_{0}^{+}\phi_{0}italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT = italic_D start_POSTSUBSCRIPT roman_ℓ - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT roman_ℓ - 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT … italic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. This implies, ϕ1+z++zsimilar-tosubscriptitalic-ϕ1𝑧superscript𝑧\phi_{\ell}\sim 1+z+...+z^{\ell}italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT ∼ 1 + italic_z + … + italic_z start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT manifests itself as a polynomial with no decaying behavior. Moreover, following Ref.Hui:2021vcv , one may construct an analogous Noether current P(r)subscript𝑃𝑟P_{\ell}(r)italic_P start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT ( italic_r ) in the Kerr case also, which implies the other decaying solution at infinity must diverge at r+subscript𝑟r_{+}italic_r start_POSTSUBSCRIPT + end_POSTSUBSCRIPT. Combining these two facts, it is evident that scalar TLN vanishes for Kerr BHs as well.

In Refs.Charalambous:2021mea ; Hui:2021vcv ; Hui:2020xxx ; Katagiri:2022vyz , the authors have further shown the presence of a ladder symmetry among different spin-perturbations, namely the scalar (s=0𝑠0s=0italic_s = 0), vector (s=1𝑠1s=1italic_s = 1), and gravitational (s=2𝑠2s=2italic_s = 2) ones. We encourage our readers to follow this nice construction, which demonstrates why the Reissner-Nordström/Kerr BHs have vanishing Love numbers even for static higher-spin perturbations. However, for the purpose of this paper, we shall skip those computations.

It is important to note that the structure of the ladder operators D±superscriptsubscript𝐷plus-or-minusD_{\ell}^{\pm}italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT and the ladder symmetry are closely tied to the particular form of the Hamiltonian operator Hsubscript𝐻H_{\ell}italic_H start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT, which in turn depends on the background metric. Thus, such ladder structure is not generally expected to hold for an arbitrarily spacetime. As an example, suppose we consider a theory of gravity with higher curvature terms, then its solution may deviate from Reissner-Nordström and Kerr metrics in such a way that does not support ladder structure for scalar perturbations. This motivates us to find the most general class of static and stationary spacetimes which admit such ladder symmetry.

III Generalization for Static Spherically Symmetric BH

We shall now shift our attention to study the tidal response of a general static and spherically symmetric metric under the influence of a static and massless scalar field. Our goal is to derive the constraints on the form of such a metric by demanding the existence of a ladder structure. A generic static, spherically symmetric metric is given by

ds2=f(r)dt2+dr2g(r)+h(r)dΩ(2)2.dsuperscript𝑠2𝑓𝑟dsuperscript𝑡2dsuperscript𝑟2𝑔𝑟𝑟dsuperscriptsubscriptΩ22\mathrm{d}s^{2}=-f(r)\mathrm{d}t^{2}+\frac{\mathrm{d}r^{2}}{g(r)}+h(r)\mathrm{%d}\Omega_{(2)}^{2}\,.roman_d italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = - italic_f ( italic_r ) roman_d italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG roman_d italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_g ( italic_r ) end_ARG + italic_h ( italic_r ) roman_d roman_Ω start_POSTSUBSCRIPT ( 2 ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .(11)

In such a spacetime, the massless Klein-Gordon equation can always be reduced to the form: Δb(r)ϕ′′(r)+Δc(r)ϕ(r)(+1)ϕ(r)=0subscriptΔ𝑏𝑟superscriptsubscriptitalic-ϕ′′𝑟subscriptΔ𝑐𝑟superscriptsubscriptitalic-ϕ𝑟1subscriptitalic-ϕ𝑟0\Delta_{b}(r)\,\phi_{\ell}^{\prime\prime}(r)+\Delta_{c}(r)\,\phi_{\ell}^{%\prime}(r)-\ell(\ell+1)\phi_{\ell}(r)=0roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_r ) italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ( italic_r ) + roman_Δ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_r ) italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ) - roman_ℓ ( roman_ℓ + 1 ) italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT ( italic_r ) = 0. Here, the explicit forms of {Δb,Δc}subscriptΔ𝑏subscriptΔ𝑐\{\Delta_{b},\,\Delta_{c}\}{ roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , roman_Δ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT } depend on the components of the background metric. Motivated by the Reissner-Nordström case presented earlier, it is suggestive to multiply the above equation by ΔbsubscriptΔ𝑏\Delta_{b}roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT and define the general Hamiltonian as

H=Δb(r)[Δb(r)r2+Δc(r)r(+1)].subscript𝐻subscriptΔ𝑏𝑟delimited-[]subscriptΔ𝑏𝑟superscriptsubscript𝑟2subscriptΔ𝑐𝑟subscript𝑟1H_{\ell}=-\Delta_{b}(r)\;\Big{[}\Delta_{b}(r)\,\partial_{r}^{2}+\Delta_{c}(r)%\,\partial_{r}-\ell(\ell+1)\Big{]}\,.italic_H start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT = - roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_r ) [ roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_r ) ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_Δ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_r ) ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT - roman_ℓ ( roman_ℓ + 1 ) ] .(12)

As before, this multiplicative factor makes the Hamiltonian nicely factorizable, and all the subsequent expressions look cleaner.

We want to derive conditions on {Δb,Δc}subscriptΔ𝑏subscriptΔ𝑐\{\Delta_{b},\,\Delta_{c}\}{ roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , roman_Δ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT } so that the quadratic Hamiltonian given by Eq.(12) supports a ladder structure similar to Eq.(5) and Eq.(6). For this purpose, our first step is to decompose this Hsubscript𝐻H_{\ell}italic_H start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT into two first-order raising and lowering operators. Taking inspiration from the structure of ladder operators for the Reissner-Nordström case, we define them as

D+=Δ1(r)r++12Δ2(r);D=Δ3(r)r+2Δ4(r).formulae-sequencesuperscriptsubscript𝐷subscriptΔ1𝑟subscript𝑟12subscriptΔ2𝑟superscriptsubscript𝐷subscriptΔ3𝑟subscript𝑟2subscriptΔ4𝑟\begin{split}&D_{\ell}^{+}=-\Delta_{1}(r)\partial_{r}+\frac{\ell+1}{2}\Delta_{%2}(r)\,;\\&D_{\ell}^{-}=\Delta_{3}(r)\partial_{r}+\frac{\ell}{2}\Delta_{4}(r)\,.\end{split}start_ROW start_CELL end_CELL start_CELL italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT = - roman_Δ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_r ) ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT + divide start_ARG roman_ℓ + 1 end_ARG start_ARG 2 end_ARG roman_Δ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_r ) ; end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT = roman_Δ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_r ) ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT + divide start_ARG roman_ℓ end_ARG start_ARG 2 end_ARG roman_Δ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( italic_r ) . end_CELL end_ROW(13)

So far these ΔΔ\Deltaroman_Δ’s are some unknown functions of r𝑟ritalic_r only, independent of \ellroman_ℓ. To determine their functional forms, we now employ the fundamental commutation relations given by Eq.(5), which they must satisfy with the Hamiltonian for an arbitrary choice of ϕsubscriptitalic-ϕ\phi_{\ell}italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT. Therefore, we get the following conditions,

Δ1(r)=Δb(r),Δ2(r)=2s(r)+1;Δ3(r)=Δb(r),Δ4(r)=2+s(r);Δb(r)=Δ2(r)s(r)+1=Δ4(r)+s(r),formulae-sequencesubscriptΔ1𝑟subscriptΔ𝑏𝑟formulae-sequencesuperscriptsubscriptΔ2𝑟2superscript𝑠𝑟1formulae-sequencesubscriptΔ3𝑟subscriptΔ𝑏𝑟formulae-sequencesuperscriptsubscriptΔ4𝑟2superscript𝑠𝑟superscriptsubscriptΔ𝑏𝑟subscriptΔ2𝑟𝑠𝑟1subscriptΔ4𝑟𝑠𝑟\begin{split}&\Delta_{1}(r)=\Delta_{b}(r)\;,\;\Delta_{2}^{\prime}(r)=-2-\frac{%s^{\prime}(r)}{\ell+1}\,;\\&\Delta_{3}(r)=\Delta_{b}(r)\;,\;\Delta_{4}^{\prime}(r)=-2+\frac{s^{\prime}(r)%}{\ell}\,;\\&\Delta_{b}^{\prime}(r)=-\Delta_{2}(r)-\frac{s(r)}{\ell+1}=-\Delta_{4}(r)+%\frac{s(r)}{\ell}\,,\end{split}start_ROW start_CELL end_CELL start_CELL roman_Δ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_r ) = roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_r ) , roman_Δ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ) = - 2 - divide start_ARG italic_s start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ) end_ARG start_ARG roman_ℓ + 1 end_ARG ; end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL roman_Δ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_r ) = roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_r ) , roman_Δ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ) = - 2 + divide start_ARG italic_s start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ) end_ARG start_ARG roman_ℓ end_ARG ; end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ) = - roman_Δ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_r ) - divide start_ARG italic_s ( italic_r ) end_ARG start_ARG roman_ℓ + 1 end_ARG = - roman_Δ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( italic_r ) + divide start_ARG italic_s ( italic_r ) end_ARG start_ARG roman_ℓ end_ARG , end_CELL end_ROW(14)

where s(r)=Δc(r)Δb(r)𝑠𝑟subscriptΔ𝑐𝑟superscriptsubscriptΔ𝑏𝑟s(r)=\Delta_{c}(r)-\Delta_{b}^{\prime}(r)italic_s ( italic_r ) = roman_Δ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_r ) - roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ). Using the fact that Δ2subscriptΔ2\Delta_{2}roman_Δ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and Δ4subscriptΔ4\Delta_{4}roman_Δ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT do not depend on \ellroman_ℓ, we must set s(r)=c1𝑠𝑟subscript𝑐1s(r)=c_{1}italic_s ( italic_r ) = italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT with c1subscript𝑐1c_{1}italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT being an \ellroman_ℓ-independent constant. Then, using the last relation along with the fact that ΔbsubscriptΔ𝑏\Delta_{b}roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT is \ellroman_ℓ-independent, we get c1=0subscript𝑐10c_{1}=0italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 0. As a result, Δ2(r)=Δ4(r)=2r+c2subscriptΔ2𝑟subscriptΔ4𝑟2𝑟subscript𝑐2\Delta_{2}(r)=\Delta_{4}(r)=-2\,r+c_{2}roman_Δ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_r ) = roman_Δ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( italic_r ) = - 2 italic_r + italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, and

Δb(r)=r2c2r+c3,subscriptΔ𝑏𝑟superscript𝑟2subscript𝑐2𝑟subscript𝑐3\Delta_{b}(r)=r^{2}-c_{2}\,r+c_{3}\,,roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_r ) = italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_r + italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ,(15)

where (c2,c3)subscript𝑐2subscript𝑐3(c_{2},c_{3})( italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) are again some \ellroman_ℓ-independent constants. It is remarkable that the imposition of the ladder symmetries led to such a simple forms of various functions like Δb(r)subscriptΔ𝑏𝑟\Delta_{b}(r)roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_r ). Moreover, the Hamiltonian takes the form similar to Eq.(3),

H=Δb(r)[r{Δb(r)r}(+1)].subscript𝐻subscriptΔ𝑏𝑟delimited-[]subscript𝑟subscriptΔ𝑏𝑟subscript𝑟1H_{\ell}=-\Delta_{b}(r)\left[\partial_{r}\big{\{}\Delta_{b}(r)\partial_{r}\big%{\}}-\ell\big{(}\ell+1\big{)}\right]\,.italic_H start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT = - roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_r ) [ ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT { roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_r ) ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT } - roman_ℓ ( roman_ℓ + 1 ) ] .(16)

Let us now summarize the ladder structure we have obtained so far,

D+=Δb(r)r+12Δb(r),D=Δb(r)r2Δb(r),H=D+1D+(+1)24(c224c3)=D1+D24(c224c3).\begin{split}&D_{\ell}^{+}=-\Delta_{b}(r)\,\partial_{r}-\frac{\ell+1}{2}\,%\Delta^{\prime}_{b}(r)\,,\\&D_{\ell}^{-}=\Delta_{b}(r)\,\partial_{r}-\frac{\ell}{2}\,\Delta^{\prime}_{b}(%r)\,,\\&H_{\ell}=D_{\ell+1}^{-}D_{\ell}^{+}-\frac{(\ell+1)^{2}}{4}\left(c_{2}^{2}-4c_%{3}\right)\\&\,\,\,\,\,\,\,\,=D_{\ell-1}^{+}D_{\ell}^{-}-\frac{\ell^{2}}{4}\left(c_{2}^{2}%-4c_{3}\right)\,.\end{split}start_ROW start_CELL end_CELL start_CELL italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT = - roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_r ) ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT - divide start_ARG roman_ℓ + 1 end_ARG start_ARG 2 end_ARG roman_Δ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_r ) , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT = roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_r ) ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT - divide start_ARG roman_ℓ end_ARG start_ARG 2 end_ARG roman_Δ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_r ) , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL italic_H start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT = italic_D start_POSTSUBSCRIPT roman_ℓ + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT - divide start_ARG ( roman_ℓ + 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG ( italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 4 italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = italic_D start_POSTSUBSCRIPT roman_ℓ - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT - divide start_ARG roman_ℓ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG ( italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 4 italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) . end_CELL end_ROW(17)

Additionally, the form of the Hamiltonian given by Eq.(16) along with Eq.(15) also requires that the metric components in Eq.(11) must satisfy the relation

f(r)=g(r)=Δb(r)h(r).𝑓𝑟𝑔𝑟subscriptΔ𝑏𝑟𝑟f(r)=g(r)=\frac{\Delta_{b}(r)}{h(r)}\,.italic_f ( italic_r ) = italic_g ( italic_r ) = divide start_ARG roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_r ) end_ARG start_ARG italic_h ( italic_r ) end_ARG .(18)

We obtain this relation by comparing the Klein-Gordon Hamiltonian obtained from Eq.(11) with that in Eq.(16).

Therefore, the most general static and spherically symmetric metric that supports the ladder symmetry can be written as

ds2=Δb(r)h(r)dt2+h(r)Δb(r)dr2+h(r)dΩ(2)2,dsuperscript𝑠2subscriptΔ𝑏𝑟𝑟dsuperscript𝑡2𝑟subscriptΔ𝑏𝑟dsuperscript𝑟2𝑟dsuperscriptsubscriptΩ22\mathrm{d}s^{2}=-\frac{\Delta_{b}(r)}{h(r)}\,\mathrm{d}t^{2}+\frac{h(r)}{%\Delta_{b}(r)}\,\mathrm{d}r^{2}+h(r)\,\mathrm{d}\Omega_{(2)}^{2}\,,roman_d italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = - divide start_ARG roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_r ) end_ARG start_ARG italic_h ( italic_r ) end_ARG roman_d italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG italic_h ( italic_r ) end_ARG start_ARG roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_r ) end_ARG roman_d italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_h ( italic_r ) roman_d roman_Ω start_POSTSUBSCRIPT ( 2 ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,(19)

where Δb(r)subscriptΔ𝑏𝑟\Delta_{b}(r)roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_r ) is given by Eq.(15). The above metric is spatially conformal to Reissner-Nordström metric with a conformal factor h(r)/r2𝑟superscript𝑟2h(r)/r^{2}italic_h ( italic_r ) / italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, provided we identify c2rssubscript𝑐2subscript𝑟𝑠c_{2}\to r_{s}italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT → italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT and c3rQ2subscript𝑐3superscriptsubscript𝑟𝑄2c_{3}\to r_{Q}^{2}italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT → italic_r start_POSTSUBSCRIPT italic_Q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Some comments on the above construction are in order:

(i) Note that the metric in Eq.(11) did not have the property gttgrr=1subscript𝑔𝑡𝑡subscript𝑔𝑟𝑟1g_{tt}\,g_{rr}=-1italic_g start_POSTSUBSCRIPT italic_t italic_t end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_r italic_r end_POSTSUBSCRIPT = - 1 to begin with. However, the imposition of the ladder symmetry has forced this structure in Eq.(18). Hence, if we insist that the metric in Eq.(19) is a solution of GR with some matter Tμνsubscript𝑇𝜇𝜈T_{\mu\nu}italic_T start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT, then it must have vanishing radial null-null component Jacobson , i.e., Tμνkμkν=0subscript𝑇𝜇𝜈superscript𝑘𝜇superscript𝑘𝜈0T_{\mu\nu}\,k^{\mu}\,k^{\nu}=0italic_T start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT italic_k start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT = 0 with kμsuperscript𝑘𝜇k^{\mu}italic_k start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT being the radial null vector. For example, it is easy to check that this condition is satisfied both in vacuum and electro-vacuum.

(ii) Since the function h(r)𝑟h(r)italic_h ( italic_r ) remains unconstrained, we can maintain the ladder structure by choosing it at our will (as long as it does not produce any singularity in the domain of outer communication). For example, the choice of h(r)=r2𝑟superscript𝑟2h(r)=r^{2}italic_h ( italic_r ) = italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT leads to a Reissner-Nordström-type metric. Had we fixed f(r)=r2𝑓𝑟superscript𝑟2f(r)=r^{2}italic_f ( italic_r ) = italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT from the beginning, we would have missed this additional freedom.

(iii) However, for generic choices of h(r)𝑟h(r)italic_h ( italic_r ), the metric will not (in general) be diffeomorphic to Reissner-Nordström, which can be readily checked by calculating various curvature scalars. For the purpose of illustration, let us consider the Ricci scalar,

R=[h(r)22h(r)h′′(r)]Δb(r)2h3(r).𝑅delimited-[]superscriptsuperscript𝑟22𝑟superscript′′𝑟subscriptΔ𝑏𝑟2superscript3𝑟R=\left[h^{\prime}(r)^{2}-2\,h(r)\,h^{\prime\prime}(r)\right]\,\frac{\Delta_{b%}(r)}{2\,h^{3}(r)}\,.italic_R = [ italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 italic_h ( italic_r ) italic_h start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ( italic_r ) ] divide start_ARG roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_r ) end_ARG start_ARG 2 italic_h start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( italic_r ) end_ARG .

In contrast to the 4444-dimensional Reissner-Nordström metric, R𝑅Ritalic_R does not vanish unless h(r)=(ar+b)2𝑟superscript𝑎𝑟𝑏2h(r)=(a\,r+b)^{2}italic_h ( italic_r ) = ( italic_a italic_r + italic_b ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT with (a,b)𝑎𝑏(a,b)( italic_a , italic_b ) being some constants.

(iv) The ladder structure does not determine the sign of the constants (c2,c3)subscript𝑐2subscript𝑐3(c_{2},c_{3})( italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) appearing in the metric in Eq.(19). Though if we further require that the associated spacetime is that of a BH, then we must impose c224c3superscriptsubscript𝑐224subscript𝑐3c_{2}^{2}\geq 4\,c_{3}italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≥ 4 italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. This would ensure the existence of a positive real root of Δb(r)=0subscriptΔ𝑏𝑟0\Delta_{b}(r)=0roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_r ) = 0 at r=c2/2+c22/4c3𝑟subscript𝑐22superscriptsubscript𝑐224subscript𝑐3r=c_{2}/2+\sqrt{c_{2}^{2}/4-c_{3}}italic_r = italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT / 2 + square-root start_ARG italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 4 - italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_ARG  .

(v) Moreover, since the metric in Eq.(19) gives rise to a scalar Hamiltonian similar to the Reissner-Nordtröm BH (assuming c224c3superscriptsubscript𝑐224subscript𝑐3c_{2}^{2}\geq 4\,c_{3}italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≥ 4 italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT), one can easily follow the Love number calculation presented earlier to show that these BHs also have zero TLN.

III.1 Generalization for Rotating BH: Konoplya-Rezzola-Zhidenko Class

In this section, we aim to extend our previous result beyond spherical symmetry. Ideally, one would like to find the most general stationary BH solution which admits the ladder symmetry for static massless scalar perturbations. However, in such a background, the Klein-Gordon equation will not in general be separable in a radial and angular parts. To avoid this difficulty, we instead start with a well-motivated generalization of the Kerr-like spacetimes, namely the Konoplya-Rezzola-Zhidenko (KRZ) class of metricsKonoplya:2016jvv ; Konoplya:2018arm . These BH spacetimes represent the most general stationary, axisymmetric and asymptotically flat Kerr-like spacetimes which admits the separation of the scalar wave equation into radial and angular parts in Boyer-Lindquist type coordinates. Such a metric can be written asKonoplya:2018arm ,

ds2=(N2K2a2RM2(1y2)r4Σ2K2)dt2+K2r2(1y2)dφ22aRMrΣ(1y2)dtdφ+Σ(RB2N2dr2+r2dy21y2),dsuperscript𝑠2superscript𝑁2superscript𝐾2superscript𝑎2superscriptsubscript𝑅𝑀21superscript𝑦2superscript𝑟4superscriptΣ2superscript𝐾2dsuperscript𝑡2superscript𝐾2superscript𝑟21superscript𝑦2dsuperscript𝜑22𝑎subscript𝑅𝑀𝑟Σ1superscript𝑦2d𝑡d𝜑Σsuperscriptsubscript𝑅𝐵2superscript𝑁2dsuperscript𝑟2superscript𝑟2dsuperscript𝑦21superscript𝑦2\begin{split}\mathrm{d}s^{2}=&-\left(\frac{N^{2}}{K^{2}}-\frac{a^{2}R_{M}^{2}(%1-y^{2})}{r^{4}\Sigma^{2}K^{2}}\right)\mathrm{d}t^{2}+K^{2}\,r^{2}(1-y^{2})%\mathrm{d}\varphi^{2}\\&-\frac{2aR_{M}}{r\Sigma}\,(1-y^{2})\,\mathrm{d}t\mathrm{d}\varphi+\Sigma\left%(\frac{R_{B}^{2}}{N^{2}}\mathrm{d}r^{2}+\frac{r^{2}\,\mathrm{d}y^{2}}{1-y^{2}}%\right),\end{split}start_ROW start_CELL roman_d italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = end_CELL start_CELL - ( divide start_ARG italic_N start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_K start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_R start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 1 - italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_ARG start_ARG italic_r start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT roman_Σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_K start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) roman_d italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_K start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 1 - italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) roman_d italic_φ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL - divide start_ARG 2 italic_a italic_R start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT end_ARG start_ARG italic_r roman_Σ end_ARG ( 1 - italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) roman_d italic_t roman_d italic_φ + roman_Σ ( divide start_ARG italic_R start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_N start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG roman_d italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_d italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 1 - italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) , end_CELL end_ROW(20)

with y=cosθ𝑦𝜃y=\cos\thetaitalic_y = roman_cos italic_θ as one of the coordinates, and the separability requires that the functions has following forms (where a𝑎aitalic_a is the rotation parameter)

Σ(r,y)=RΣ+a2y2r2,N2(r)=RΣRMr+a2r2,K2(r,y)=1Σ[RΣ2+RΣa2r2+a2RMr3]+a2y2N2r2Σ.formulae-sequenceΣ𝑟𝑦subscript𝑅Σsuperscript𝑎2superscript𝑦2superscript𝑟2formulae-sequencesuperscript𝑁2𝑟subscript𝑅Σsubscript𝑅𝑀𝑟superscript𝑎2superscript𝑟2superscript𝐾2𝑟𝑦1Σdelimited-[]superscriptsubscript𝑅Σ2subscript𝑅Σsuperscript𝑎2superscript𝑟2superscript𝑎2subscript𝑅𝑀superscript𝑟3superscript𝑎2superscript𝑦2superscript𝑁2superscript𝑟2Σ\begin{split}&\Sigma(r,y)=R_{\Sigma}+\frac{a^{2}y^{2}}{r^{2}},N^{2}(r)=R_{%\Sigma}-\frac{R_{M}}{r}+\frac{a^{2}}{r^{2}},\\&K^{2}(r,y)=\frac{1}{\Sigma}\left[R_{\Sigma}^{2}+R_{\Sigma}\frac{a^{2}}{r^{2}}%+\frac{a^{2}R_{M}}{r^{3}}\right]+\frac{a^{2}y^{2}N^{2}}{r^{2}\Sigma}.\end{split}start_ROW start_CELL end_CELL start_CELL roman_Σ ( italic_r , italic_y ) = italic_R start_POSTSUBSCRIPT roman_Σ end_POSTSUBSCRIPT + divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , italic_N start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_r ) = italic_R start_POSTSUBSCRIPT roman_Σ end_POSTSUBSCRIPT - divide start_ARG italic_R start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT end_ARG start_ARG italic_r end_ARG + divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL italic_K start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_r , italic_y ) = divide start_ARG 1 end_ARG start_ARG roman_Σ end_ARG [ italic_R start_POSTSUBSCRIPT roman_Σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_R start_POSTSUBSCRIPT roman_Σ end_POSTSUBSCRIPT divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_R start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT end_ARG start_ARG italic_r start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ] + divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_N start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Σ end_ARG . end_CELL end_ROW(21)

The location of the event horizon (which is also the Killing horizon) is given by N(r)=0𝑁𝑟0N(r)=0italic_N ( italic_r ) = 0. Thus, the metric solely depends on the three functions of radial coordinates RΣ(r),RM(r)subscript𝑅Σ𝑟subscript𝑅𝑀𝑟R_{\Sigma}(r),\,R_{M}(r)italic_R start_POSTSUBSCRIPT roman_Σ end_POSTSUBSCRIPT ( italic_r ) , italic_R start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT ( italic_r ), and RB(r)subscript𝑅𝐵𝑟R_{B}(r)italic_R start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ( italic_r ), out of which one can be fixed as per the gauge freedom. We choose RB(r)=1subscript𝑅𝐵𝑟1R_{B}(r)=1italic_R start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ( italic_r ) = 1 and the other two are independent functions of r𝑟ritalic_r Konoplya:2018arm . Moreover, the asymptotic flatness is assured, if RΣ(r)subscript𝑅Σ𝑟R_{\Sigma}(r)italic_R start_POSTSUBSCRIPT roman_Σ end_POSTSUBSCRIPT ( italic_r ) approaches unity and RM(r)r2subscript𝑅𝑀𝑟superscript𝑟2\frac{R_{M}(r)}{r^{2}}divide start_ARG italic_R start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT ( italic_r ) end_ARG start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG vanishes in r𝑟r\to\inftyitalic_r → ∞ limit.

Then, in the background of such a metric, the radial part of the Klein-Gordon equation for a static scalar field Φm=ϕ(r)Ym(y,φ)subscriptΦ𝑚subscriptitalic-ϕ𝑟subscript𝑌𝑚𝑦𝜑\Phi_{\ell m}=\phi_{\ell}(r)Y_{\ell m}(y,\varphi)roman_Φ start_POSTSUBSCRIPT roman_ℓ italic_m end_POSTSUBSCRIPT = italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT ( italic_r ) italic_Y start_POSTSUBSCRIPT roman_ℓ italic_m end_POSTSUBSCRIPT ( italic_y , italic_φ ) simplifies to

Hϕ=Δ[r{Δ(r)r}+δ(r)(+1)]ϕ=0,subscript𝐻subscriptitalic-ϕΔdelimited-[]subscript𝑟Δ𝑟subscript𝑟𝛿𝑟1subscriptitalic-ϕ0H_{\ell}\,\phi_{\ell}\,=-\Delta\left[\partial_{r}\left\{\Delta(r)\partial_{r}%\right\}+\delta(r)-\ell(\ell+1)\right]\phi_{\ell}\,=0\,,italic_H start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT = - roman_Δ [ ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT { roman_Δ ( italic_r ) ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT } + italic_δ ( italic_r ) - roman_ℓ ( roman_ℓ + 1 ) ] italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT = 0 ,(22)

where Hsubscript𝐻H_{\ell}italic_H start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT is the Hamiltonian, ΔΔ\Deltaroman_Δ and δ𝛿\deltaitalic_δ are given by

Δ(r)=r2N2(r)=r2RΣ(r)rRM(r)+a2,δ(r)=a2m2Δ(r),formulae-sequenceΔ𝑟superscript𝑟2superscript𝑁2𝑟superscript𝑟2subscript𝑅Σ𝑟𝑟subscript𝑅𝑀𝑟superscript𝑎2𝛿𝑟superscript𝑎2superscript𝑚2Δ𝑟\Delta(r)=r^{2}N^{2}(r)=r^{2}R_{\Sigma}(r)-rR_{M}(r)+a^{2}\>,\>\delta(r)=\frac%{a^{2}m^{2}}{\Delta(r)}\,,roman_Δ ( italic_r ) = italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_N start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_r ) = italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_R start_POSTSUBSCRIPT roman_Σ end_POSTSUBSCRIPT ( italic_r ) - italic_r italic_R start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT ( italic_r ) + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_δ ( italic_r ) = divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG roman_Δ ( italic_r ) end_ARG ,(23)

with m𝑚mitalic_m being the azimuthal number. We aim to study this scalar field equation in the KRZ class of BH spacetimes and investigate the existence of the ladder structure. We shall show that the requirement of the ladder symmetry would fix the functional form of ΔΔ\Deltaroman_Δ. For this purpose, we define the raising and lowering operators as

D+=Δ1r++12Δ2;D=Δ3r+2Δ4.formulae-sequencesuperscriptsubscript𝐷subscriptΔ1subscript𝑟12subscriptΔ2superscriptsubscript𝐷subscriptΔ3subscript𝑟2subscriptΔ4D_{\ell}^{+}=-\Delta_{1}\,\partial_{r}+\frac{\ell+1}{2}\,\Delta_{2}\,;\,D_{%\ell}^{-}=\Delta_{3}\,\partial_{r}+\frac{\ell}{2}\,\Delta_{4}.italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT = - roman_Δ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT + divide start_ARG roman_ℓ + 1 end_ARG start_ARG 2 end_ARG roman_Δ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ; italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT = roman_Δ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT + divide start_ARG roman_ℓ end_ARG start_ARG 2 end_ARG roman_Δ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT .(24)

where ΔΔ\Deltaroman_Δ’s could in principle depend on not only r𝑟ritalic_r but \ellroman_ℓ due to the absence of spherical symmetry. Substituting D+superscriptsubscript𝐷D_{\ell}^{+}italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT in the fundamental commutation relation given by Eq.(5), we obtain

Δ1(r,)=Δ(r),Δ2(r,)=2r+e2,δ(r)=e4Δ(r)(+1)2(r2Δe2r+e3)Δ(r).formulae-sequencesubscriptΔ1𝑟Δ𝑟formulae-sequencesubscriptΔ2𝑟2𝑟subscript𝑒2𝛿𝑟subscript𝑒4Δ𝑟superscript12superscript𝑟2Δsubscript𝑒2𝑟subscript𝑒3Δ𝑟\begin{split}&\Delta_{1}(r,\ell)=\Delta(r)\;,\;\Delta_{2}(r,\ell)=-2r+e_{2},\\&\delta(r)=\frac{e_{4}}{\Delta(r)}-\frac{(\ell+1)^{2}\,(r^{2}-\Delta-e_{2}\,r+%e_{3})}{\Delta(r)}\,.\end{split}start_ROW start_CELL end_CELL start_CELL roman_Δ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_r , roman_ℓ ) = roman_Δ ( italic_r ) , roman_Δ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_r , roman_ℓ ) = - 2 italic_r + italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL italic_δ ( italic_r ) = divide start_ARG italic_e start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_ARG start_ARG roman_Δ ( italic_r ) end_ARG - divide start_ARG ( roman_ℓ + 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - roman_Δ - italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_r + italic_e start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) end_ARG start_ARG roman_Δ ( italic_r ) end_ARG . end_CELL end_ROW(25)

Comparing with Eq.(25), one further gets e4=a2m2subscript𝑒4superscript𝑎2superscript𝑚2e_{4}=a^{2}\,m^{2}italic_e start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, and

Δ(r)=r2e2r+e3.Δ𝑟superscript𝑟2subscript𝑒2𝑟subscript𝑒3\Delta(r)=r^{2}-e_{2}\,r+e_{3}\,.roman_Δ ( italic_r ) = italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_r + italic_e start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT .(26)

Hence, the constants (e2,e3,e4)subscript𝑒2subscript𝑒3subscript𝑒4(e_{2},e_{3},e_{4})( italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_e start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT , italic_e start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ) are also independent of \ellroman_ℓ. Similarly, for the lowering operator Dsuperscriptsubscript𝐷D_{\ell}^{-}italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT, the fundamental commutation relation in Eq.(5) gives

Δ3(r,)=Δ(r),Δ4(r,)=2r+e5,Δ(r)=e6+(2+1)r2e2(+1)2r+e52r2+1.formulae-sequencesubscriptΔ3𝑟Δ𝑟formulae-sequencesubscriptΔ4𝑟2𝑟subscript𝑒5Δ𝑟subscript𝑒621superscript𝑟2subscript𝑒2superscript12𝑟subscript𝑒5superscript2𝑟21\begin{split}&\Delta_{3}(r,\ell)=\Delta(r)\;,\;\Delta_{4}(r,\ell)=-2r+e_{5},\\&\Delta(r)=e_{6}+\frac{(2\ell+1)r^{2}-e_{2}(\ell+1)^{2}\,r+e_{5}\ell^{2}\,r}{2%\ell+1}\,.\end{split}start_ROW start_CELL end_CELL start_CELL roman_Δ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_r , roman_ℓ ) = roman_Δ ( italic_r ) , roman_Δ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( italic_r , roman_ℓ ) = - 2 italic_r + italic_e start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL roman_Δ ( italic_r ) = italic_e start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT + divide start_ARG ( 2 roman_ℓ + 1 ) italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( roman_ℓ + 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_r + italic_e start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT roman_ℓ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_r end_ARG start_ARG 2 roman_ℓ + 1 end_ARG . end_CELL end_ROW(27)

Comparing this form of ΔΔ\Deltaroman_Δ with that given in Eq.(26), we obtain e5=e2subscript𝑒5subscript𝑒2e_{5}=e_{2}italic_e start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and e6=e3subscript𝑒6subscript𝑒3e_{6}=e_{3}italic_e start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. Then, it is easy to check that Hsubscript𝐻H_{\ell}italic_H start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT can be factorized as

H=D+1D+(+1)24(e224e3)a2m2=D1+D24(e224e3)a2m2.\begin{split}&H_{\ell}=\;D_{\ell+1}^{-}D_{\ell}^{+}-\frac{(\ell+1)^{2}}{4}%\left(e_{2}^{2}-4e_{3}\right)-a^{2}\,m^{2}\\&\,\,\,\,\,\,\,\,=D_{\ell-1}^{+}D_{\ell}^{-}-\frac{\ell^{2}}{4}\left(e_{2}^{2}%-4e_{3}\right)-a^{2}\,m^{2}\,.\end{split}start_ROW start_CELL end_CELL start_CELL italic_H start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT = italic_D start_POSTSUBSCRIPT roman_ℓ + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT - divide start_ARG ( roman_ℓ + 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG ( italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 4 italic_e start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = italic_D start_POSTSUBSCRIPT roman_ℓ - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT - divide start_ARG roman_ℓ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG ( italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 4 italic_e start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . end_CELL end_ROW(28)

Lastly, it remains to find the form of RΣ(r)subscript𝑅Σ𝑟R_{\Sigma}(r)italic_R start_POSTSUBSCRIPT roman_Σ end_POSTSUBSCRIPT ( italic_r ) and RM(r)subscript𝑅𝑀𝑟R_{M}(r)italic_R start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT ( italic_r ) appearing in the metric given by Eq.(20). This can be achieved by comparing the functional form of Δ(r)Δ𝑟\Delta(r)roman_Δ ( italic_r ) in Eq.(23) and Eq.(26). Specifically, the coefficients of r2superscript𝑟2r^{2}italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, r𝑟ritalic_r, and the constant term in Eq.(23) should be 1111, e2subscript𝑒2-e_{2}- italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, and e3subscript𝑒3e_{3}italic_e start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT, respectively.

A simpler illustration could be to choose one of the radial functions as a constant, and find the corresponding class of metrics. If we set RM(r)=e0subscript𝑅𝑀𝑟subscript𝑒0R_{M}(r)=e_{0}italic_R start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT ( italic_r ) = italic_e start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT (constant), we would get the second function as,

RΣ(r)=1+br+dr2,subscript𝑅Σ𝑟1𝑏𝑟𝑑superscript𝑟2R_{\Sigma}(r)=1+\frac{b}{r}+\frac{d}{r^{2}}\,,italic_R start_POSTSUBSCRIPT roman_Σ end_POSTSUBSCRIPT ( italic_r ) = 1 + divide start_ARG italic_b end_ARG start_ARG italic_r end_ARG + divide start_ARG italic_d end_ARG start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ,(29)

with b=e0e2,andd=e3a2.formulae-sequence𝑏subscript𝑒0subscript𝑒2and𝑑subscript𝑒3superscript𝑎2b=e_{0}-e_{2}\,,\;\textrm{and}\;d=e_{3}-a^{2}\,.italic_b = italic_e start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , and italic_d = italic_e start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . Note that both Kerr and Kerr-Sen spacetimes are members of this class Konoplya:2018arm . Also, it is easy to check that in the limit of a0𝑎0a\rightarrow 0italic_a → 0, the metric in Eq.(20) (along with Eq.(26)) reduces to the spherically symmetric spacetime given by Eq.(19), provided we make the identification Δb(r)=r2N2=Δ(r)subscriptΔ𝑏𝑟superscript𝑟2superscript𝑁2Δ𝑟\Delta_{b}(r)=r^{2}\,N^{2}=\Delta(r)roman_Δ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_r ) = italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_N start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = roman_Δ ( italic_r ) and h(r)=r2Σ(r)𝑟superscript𝑟2Σ𝑟h(r)=r^{2}\,\Sigma(r)italic_h ( italic_r ) = italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Σ ( italic_r ).

Moreover, since the metric in Eq.(20) gives rise to a scalar Hamiltonian similar to the Kerr BH (assuming e224e3superscriptsubscript𝑒224subscript𝑒3e_{2}^{2}\geq 4\,e_{3}italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≥ 4 italic_e start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT), one can easily follow the Love number calculation presented earlier to show that these BHs also have zero TLN.

IV Conclusion and Discussions

Unlike horizonless compact objects, the Reissner-Nordström and Kerr BHs exhibit zero TLN, quantifying the vanishing tidal deformation under an external perturbation. Consequently, any nonzero values of TLN would indicate deviation from such spacetime geometriesCai:2019npx ; Tan:2020hog ; Charalambous:2023jgq ; Katagiri:2023umb and/or departure from the classical BH paradigmNair:2022xfm ; Cardoso:2017cfl ; Chakraborty:2023zed . Both of these possibilities are well-studied in literature as they provide us with a powerful observational tool to probe such possibilitiesDeLuca:2022xlz ; Katagiri:2023yzm ; Zi:2023pvl .

However, one faces two major difficulties in the traditional way of calculating TLN. Firstly, apart from GR, the Teukolsky-like equation for gravitational perturbations in most of the modified theories is not known. Secondly, even for scalar perturbations that does not require any field equations, a case-by-case study of TLN for all possible metrics is highly tedious and inefficient. In this context, other tools such as the notion of ladder symmetry provide us with a unified and efficient way to infer the Love number. Interestingly, both the Reissner-Nordström and Kerr BHs support such ladder structure for static scalar (also vector and gravitational) perturbations, indicating vanishing of TLN.

Motivated by this important result, we have presented the most general static and stationary (in KRZ class) BH metrics having ladder symmetry for static (with frequency ω=0𝜔0\omega=0italic_ω = 0) scalar perturbations. This in turn implies that the corresponding BHs have zero TLN for ω=0𝜔0\omega=0italic_ω = 0, i.e., Λ=𝒪(Mω)Λ𝒪𝑀𝜔\Lambda=\mathcal{O}(M\,\omega)roman_Λ = caligraphic_O ( italic_M italic_ω ). Actually, for the case of static BHs, our result is even stronger. In particular, since Hϕω2proportional-tosubscript𝐻subscriptitalic-ϕsuperscript𝜔2H_{\ell}\,\phi_{\ell}\propto\omega^{2}italic_H start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT ∝ italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT for non-static perturbations, the corresponding TLN must be 𝒪(M2ω2)𝒪superscript𝑀2superscript𝜔2\mathcal{O}(M^{2}\omega^{2})caligraphic_O ( italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ). However, a similar assertion does not hold for the rotating case, because Hϕωproportional-tosubscript𝐻subscriptitalic-ϕ𝜔H_{\ell}\,\phi_{\ell}\propto\omegaitalic_H start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT italic_ϕ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT ∝ italic_ω for non-static perturbations. These conclusions match with the recent claim reported in Ref.Perry:2023wmm .

Given the immense theoretical and observational significance, it will be interesting to extend our work for gravitational perturbations. Another important prospect would be studying various properties like geodesic structure, shadow, and stability of the general class of BH spacetimes given by Eq.(19) and Eq.(20). We leave these analyses fora future attempt.

V Acknowledgement

CS acknowledges the support from the Sabarmati Bridge Fellowship (Project ID: MIS/IITGN-SBF/PHY/SS/2023-24/025) from IIT Gandhinagar. The research of R.G. is supported by the Prime Minister Research Fellowship (PMRF ID: 1700531), Government of India. S.S. acknowledges support from the Department of Science and Technology, Government of India under the SERB CRG Grant (CRG/2020/004562).

References

  • (1)
  • (2)

References

  • (3)T.Binnington and E.Poisson,Phys. Rev. D 80 (2009), 084018doi:10.1103/PhysRevD.80.084018[arXiv:0906.1366 [gr-qc]].
  • (4)T.Damour and A.Nagar,Phys. Rev. D 80 (2009), 084035doi:10.1103/PhysRevD.80.084035[arXiv:0906.0096 [gr-qc]].
  • (5)B.Kol and M.Smolkin,JHEP 02 (2012), 010doi:10.1007/JHEP02(2012)010[arXiv:1110.3764 [hep-th]].
  • (6)P.Pani, L.Gualtieri, A.Maselli and V.Ferrari,Phys. Rev. D 92 (2015) no.2, 024010doi:10.1103/PhysRevD.92.024010[arXiv:1503.07365 [gr-qc]].
  • (7)P.Landry and E.Poisson,Phys. Rev. D 91 (2015), 104018doi:10.1103/PhysRevD.91.104018[arXiv:1503.07366 [gr-qc]].
  • (8)A.Le Tiec and M.Casals,Phys. Rev. Lett. 126 (2021) no.13, 131102doi:10.1103/PhysRevLett.126.131102[arXiv:2007.00214 [gr-qc]].
  • (9)H.S.ChiaPhys. Rev. D 104 (2021) no.2, 024013doi:10.1103/PhysRevD.104.024013[arXiv:2010.07300 [gr-qc]].
  • (10)J.D.Bekenstein,Phys. Rev. D 5 (1972), 1239-1246doi:10.1103/PhysRevD.5.1239
  • (11)J.D.Bekenstein,Phys. Rev. D 5, 2403-2412 (1972)doi:10.1103/PhysRevD.5.2403
  • (12)N.Gürlebeck,Phys. Rev. Lett. 114 (2015) no.15, 151102doi:10.1103/PhysRevLett.114.151102[arXiv:1503.03240 [gr-qc]].
  • (13)Poisson, E. and Will, C.M. (2014) Gravity: Newtonian, Post-Newtonian, Relativistic. Cambridge University Press, Cambridge.https://doi.org/10.1017/CBO9781139507486
  • (14)V.Cardoso, E.Franzin, A.Maselli, P.Pani and G.Raposo,Phys. Rev. D 95 (2017) no.8, 084014doi:10.1103/PhysRevD.95.084014[arXiv:1701.01116 [gr-qc]].
  • (15)L.Hui, A.Joyce, R.Penco, L.Santoni and A.R.Solomon,JCAP 01 (2022) no.01, 032, doi:10.1088/1475-7516/2022/01/032[arXiv:2105.01069 [hep-th]].
  • (16)J.Ben Achour, E.R.Livine, S.Mukohyama and J.P.Uzan,JHEP 07 (2022), 112doi:10.1007/JHEP07(2022)112[arXiv:2202.12828 [gr-qc]].
  • (17)L.Hui, A.Joyce, R.Penco, L.Santoni and A.R.Solomon,JHEP 09 (2022), 049doi:10.1007/JHEP09(2022)049[arXiv:2203.08832 [hep-th]].
  • (18)R.Berens, L.Hui and Z.Sun,JCAP 06 (2023), 056doi:10.1088/1475-7516/2023/06/056[arXiv:2212.09367 [hep-th]].
  • (19)T.Katagiri, M.Kimura, H.Nakano and K.Omukai,Phys. Rev. D 107 (2023) no.12, 124030doi:10.1103/PhysRevD.107.124030[arXiv:2209.10469 [gr-qc]].
  • (20)H.Fang and G.LovelacePhys. Rev. D 72 (2005), 124016doi:10.1103/PhysRevD.72.124016[arXiv:gr-qc/0505156 [gr-qc]].
  • (21)G.Creci, T.Hinderer and J.Steinhoff,Phys. Rev. D 104 (2021) no.12, 124061[erratum: Phys. Rev. D 105 (2022) no.10, 109902]doi:10.1103/PhysRevD.104.124061[arXiv:2108.03385 [gr-qc]].
  • (22)S.Cai and K.D.Wang,[arXiv:1906.06850 [hep-th]].
  • (23)H.S.Tan,Phys. Rev. D 102, no.4, 044061 (2020)doi:10.1103/PhysRevD.102.044061[arXiv:2001.00403 [gr-qc]].
  • (24)P.Charalambous and M.M.Ivanov,JHEP 07, 222 (2023)doi:10.1007/JHEP07(2023)222[arXiv:2303.16036 [hep-th]].
  • (25)T.Katagiri, T.Ikeda and V.Cardoso,[arXiv:2310.19705 [gr-qc]].
  • (26)V.De Luca, A.Maselli and P.Pani,Phys. Rev. D 107, no.4, 044058 (2023)doi:10.1103/PhysRevD.107.044058[arXiv:2212.03343 [gr-qc]].
  • (27)T.Katagiri, H.Nakano and K.Omukai,Phys. Rev. D 108, no.8, 084049 (2023)doi:10.1103/PhysRevD.108.084049[arXiv:2304.04551 [gr-qc]].
  • (28)T.Zi and P.C.Li,Phys. Rev. D 108, no.2, 024018 (2023)doi:10.1103/PhysRevD.108.024018[arXiv:2303.16610 [gr-qc]].
  • (29)S.Nair, S.Chakraborty and S.Sarkar,Phys. Rev. D 107 (2023) no.12, 124041doi:10.1103/PhysRevD.107.124041[arXiv:2208.06235 [gr-qc]].
  • (30)S.Chakraborty, E.Maggio, M.Silvestrini and P.Pani,[arXiv:2310.06023 [gr-qc]].
  • (31)P.Charalambous, S.Dubovsky and M.M.Ivanov,JHEP 05 (2021), 038doi:10.1007/JHEP05(2021)038[arXiv:2102.08917 [hep-th]].
  • (32)L.Hui, A.Joyce, R.Penco, L.Santoni and A.R.Solomon,JCAP 04 (2021), 052doi:10.1088/1475-7516/2021/04/052[arXiv:2010.00593 [hep-th]].
  • (33)T.Jacobson,Class. Quant. Grav. 24, 5717-5719 (2007)doi:10.1088/0264-9381/24/22/N02[arXiv:0707.3222 [gr-qc]].
  • (34)R.Konoplya, L.Rezzolla and A.Zhidenko,Phys. Rev. D 93, no.6, 064015 (2016)doi:10.1103/PhysRevD.93.064015[arXiv:1602.02378 [gr-qc]].
  • (35)R.A.Konoplya, Z.Stuchlík and A.Zhidenko,Phys. Rev. D 97 (2018) no.8, 084044doi:10.1103/PhysRevD.97.084044[arXiv:1801.07195 [gr-qc]].
  • (36)M.Perry and M.J.Rodriguez,[arXiv:2310.03660 [gr-qc]].
  • Symmetries of Love: Ladder Structure of Static and Rotating Black Holes (2024)

    References

    Top Articles
    Latest Posts
    Article information

    Author: Jerrold Considine

    Last Updated:

    Views: 5620

    Rating: 4.8 / 5 (78 voted)

    Reviews: 93% of readers found this page helpful

    Author information

    Name: Jerrold Considine

    Birthday: 1993-11-03

    Address: Suite 447 3463 Marybelle Circles, New Marlin, AL 20765

    Phone: +5816749283868

    Job: Sales Executive

    Hobby: Air sports, Sand art, Electronics, LARPing, Baseball, Book restoration, Puzzles

    Introduction: My name is Jerrold Considine, I am a combative, cheerful, encouraging, happy, enthusiastic, funny, kind person who loves writing and wants to share my knowledge and understanding with you.